
Gradient Descent Boosting: Convergence and Algorithm

Haohua Wan∗

May 12, 2017

Abstract

Boosting algorithm has seen many applications in recent years. An early and effective boosting
algorithm was developed in Freund and Schapire (1995) called Adaboost. Since then many different
boosting algorithms have been developed and gradient descent boosting algorithms might be the
most popular among them. This report mainly focuses on three early works about gradient
descent boosting. Mason and Frean (1999) provides some quantitative analysis of the convergence
property of Anyboost it develops, while Friedman (2001) and Friedman (2002) focus more on the
development of the algorithm itself, where they propose the so called greedy gradient boosting
algorithm. In the final part of this report, we give some numerical study about the gradient descent
boosting algorithm in Friedman (2001) in regression and classification and compare it with several
other popular learning models.

Keywords: boosting, gradient descent

1 Introduction

Boosting is a learning method that has been rapidly developing in the last thirty years. The mo-
tivation and basic idea of boosting is to combine weak learners, which are only sightly better than
random guessing, to reduce the prediction or classification errors. To be more specific, boosting is to
repeatedly apply weak learning algorithms to the data to obtain a sequence of weaker learners and
then combine them by some weight. A classic boosting algorithm called AdaBoost was developed
by Freund and Schapire (1995) and shown to perform significantly and uniformly better than bag-
ging with simple classifiers in Freund and Schapire (1996). This paper also discusses about possible
reasons about better performance of boosting method: the first has to do with reducing hypothesis
errors by combing many hypotheses; and the second has to do with variance reduction. A lot of
boosting algorithms have been developed since then and gradient descent technique is widely used in
many of them: gradient descent boosting. In this report, I will review three early works in this field:
one is Mason and Frean (1999), which proves convergence of functional-gradient-descent algorithms
(Anyboost); the other two are Friedman (2001) and Friedman (2002), which develops a very popular
class of gradient boosting models (GBM) with deterministic gradient boosting and stochastic gradi-
ent boosting. The reason that I choose these three papers is that: Mason and Frean (1999) is more
of theoretical interest, as it is an early work about some analytical property of gradient boosting

∗Industrial and Enterprise Systems Engineering Department, University of Illinois at Urbana-Champaign, Urbana,
IL 61801; email: hwan3@illinois.edu.

1

method, while the algorithm it develops is not as popular as some other boosting algorithms; Fried-
man (2001) and Friedman (2002) is more of practical value, as they develop a much more popular
and much more ”greedy” gradient boosting algorithm that is widely used in practice.

This report is organized as follows: Section 2 summarizes the convergence results of Anyboost
algorithm developed in Mason and Frean (1999) and discusses some limitation of this paper; Section
3 summarizes the ”greedy” gradient descent boosting algorithm developed in Friedman (2001) and
Friedman (2002) and discusses their limitations; Section 4 describes my numerical study in which
greedy descent boosting algorithm developed in Friedman (2001) is applied in two cases: regression
and classification; Section 5 discusses some possible directions for future research.

2 Convergence of Anyboost (Mason and Frean (1999))

Mason and Frean (1999) developed a general class of gradient descent boosting algorithms which
combine weak learners in an inner product space to minimize the loss function. The model setting
is very similar to the one we discussed in our class. Let X × Y be the sample space where X is
the feature space (typically Rn) and Y is the space of labels (typically {−1, 1}). P = P(X × Y) is
the set of all probability measures on X × Y . F is a family of classifier f (weak learners) such that
f : X → Y . Let lin(F) be the set of all linear combinations of elements in F with an inner product
〈, 〉. The loss function is denoted by L : lin(F) → R. And the objective is to find F ∈ lin(F) such
that L(F) is minimized, i.e., solve F ∗ = arg minF∈lin(F) L(F).

The basic idea of Anyboost is that given F ∈ lin(F), we want to find a f ∈ F such that
L(F + εf) − L(F) is negative, i.e., L(F + εf) decreases. Therefore, a natural choice of f would be
f = −∇(L(F)), but in general it is very likely that −∇L(F) /∈ F . By Taylor’s expansion, we have
L(F+εf) = L(F)+ε〈∇L(F), f〉+o(ε), and thus in order to minimize L(F+εf)−L(F), a good choice
of f would be the one that maximizes −〈∇L(F), f〉. And these ideas motivate Anyboost algorithm,
which is described in Table 1.

Algorithm 1: Anyboost

Input: a labeled training data set, a routine that R(F) that returns f ∈ F that gives a large −〈∇L(F), f〉
Initialization: F0 = 0,f1 = 0
For i = 1, 2, , · · · , T :

Let ft+1 = R(Ft)
if − 〈∇L(Ft), ft+1〉 ≤ 0, return Ft
Choose wt+1 and let Ft+1 = Ft + wt+1ft+1

End For
Return FT+1

Table 1: Anyboost Algorithm

Note that in Table 1 the inner product 〈, 〉 and the step size wt are not specified, and thus they
can be adapted for specific application. And the algorithm terminates when −〈∇L(Ft), ft+1〉 ≤ 0,
which means that combining more weak learners no longer reduces the loss function. Mason and
Frean (1999) also points out that many boosting algorithms, such as Adaboost (Freund and Schapire
(1995)) and Logitboost(Friedman and Tibshirani (2000)), can be viewed as a special case of Anyboost
algorithm.
An import result in Mason and Frean (1999)) is the following theorem, which states that Anyboost

2

algorithm either stops after finite iterations or converges to some finite value.

THEOREM 1. Let L : lin(F) → R be any lower bounded, β−smooth loss function, i.e., for any
F, F ′ ∈ lin(F), ‖∇L(F)−∇L(F ′)‖ ≤ β ‖F − F ′‖. Let F0, F1, · · · be the sequence of classifiers
generated by Anyboost algorithm with step size

wt+1 = −〈∇L(Ft), ft+1〉
β ‖ft+1‖2

, (1)

then Anyboost algorithm either stops at iteration T with −〈∇L(FT), fT+1〉 ≤ 0 or L(Ft) converges to
some finite value C∗ with limt→∞−〈∇L(Ft), ft+1〉 = 0.

Another important result in Mason and Frean (1999)) states that any accumulation point of the
sequence Ft generated by Anyboost algorithm can be a global minimum of the loss function if we can
always find the best ft.

THEOREM 2. Let L : lin(F)→ R be a convex loss function with properties in Theorem 1, and let
F0, F1, · · · be the sequence of classifiers generated by Anyboost algorithm with step size (1). Assume
the class of weak learners F is negation closed (if f ∈ F , then −f ∈ F) and that on each iteration
of Anyboost algorithm we can always find ft+1 maximizing −〈∇L(Ft), ft+1〉. Then any accumulation
point F of the sequence Ft generated by Anyboost algorithm satisfies

sup
f∈F
−〈∇L(F), f〉 = 0, and L(F) = inf

F ′∈lin(F)
L(F ′)

Although Theorem 1 and 2 give convergence results for a large set of boosting algorithms, which is
very useful in the algorithms’ performance analysis, it also has several limitations. First, the routine
R(F) that returns f ∈ F with a large value of −〈∇L(F), f〉 in Anyboost algorithm may be hard
to obtain. In addition, at each iteration, it does not extract as much information as many other
boosting algorithms do, like the Greedy Gradient Descent Boosting in Friedman (2001). And this
might be why it is not used so widely in practice. Second, in Theorem 1, it requires the loss function
to be β−smooth, which may be too restricted in many applications. Third, the convergence result
in Theorem 1 is only an existence result, which does not specify the exact value of C∗. Moreover,
from Theorem 1, we do not know the consistency of Anyboost algorithm, i.e., what is the difference
between C∗ and the lower bound of the loss function. And in many applications, we will be most
intereted in this difference.

3 Gradient Boosted Models (Friedman (2001), Friedman (2002))

Gradient Boosted Models (GBM), which was developed in Friedman (2001), is now widely used in
practice. The model setting is very similar to that in Section 2. Let X × Y be the sample space
where X is the feature space (typically Rn) and Y is the space of labels (typically {−1, 1}). And let
{xi, yi}N1 be the training sample. Let P = P(X×Y) be the set of all probability measures on X×Y .
The classifier F has an additive expansion of the form

F (x; {βm,am}M1) =
M∑
m=1

βmh(x;am), (2)

3

where h(x;am) is usually a parameterized weak learner. And the loss function is denoted by L(y, F).
The objective is to solve the following problem

{βm,am}M1 = argmin{β′m,a′m}M1

N∑
i=1

L

(
yi,

M∑
m=1

β′mh(xi;a
′
m)

)
(3)

which is very much like the ERM algorithm. And if (3) is infeasible, we can try a greedy stagewise
approach (this is why this model is also called ”greedy gradient descent algorithm” and in the following
discussion, we will simple denote it by gradient descent model, or GBM). For m = 1, 2, · · · ,M , solve

(βm,am) = argminβ,a

N∑
i=1

L(yi, Fm−1(xi) + βh(xi;a)) (4)

and then update

Fm(x) = Fm−1(x) + βmh(x;am). (5)

If (4) is still hard to solve, we can implement a steepest descent routine by first getting the data
based gradient

−gm(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

. (6)

(6) is defined only at the data points {xi}N1 , and in order to generalize it to other x−values, we can
choose h(x;a) that is parallel to or has a high correlation with −gm, i.e., solve

am = argmina,β

N∑
i=1

(−gm(xi)− βh(xi;a))2 . (7)

And then we can update

Fm(x) = Fm−1(x) + ρmh(x;a), (8)

where ρm is obtained through line search

ρm = argminρ

N∑
i=1

L(yi, Fm−1(x) + ρh(x). (9)

By (7), if we have a least-squares algorithm, then we can replace the much more difficult minimization
problem (4) by a least-squares minimization problem (7) and a single variable minimization problem
(9). And this gives rise to the following steepest-descent algorithm in Table 2.

To reduce overfitting of Algorithm 2, it is an good idea to apply regularization method. Simulation
results in Friedman (2001) indicate that that adding a shrinkage term is often better than reducing
the number of components, i.e., (8) becomes

Fm(x) = Fm−1(x) + ν · ρmh(x;a), (10)

where ν is the shrinkage rate.

4

Algorithm 2: GBM

Input: a labeled training data set {xi, yi}N1
Initialization: F0(x) = argminρ

∑N
i=1 L(yi, ρ)

For m = 1, 2, , · · · ,M :

ỹi = −
[
∂L(yi,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, · · · , N

am = argmina,β
∑N

i=1 (ỹi − βh(xi;a))2

ρm = argminρ
∑N

i=1 L(yi, Fm−1(xi) + ρh(xi)
Fm(x) = Fm−1(x) + ρmh(x;a)

End For

Table 2: Gradient Boost Algorithm

Algorithm 3: Stochastic GBM

Input: a labeled training data set {xi, yi}N1
Initialization: F0(x) = argminρ

∑N
i=1 L(yi, ρ)

For m = 1, 2, , · · · ,M :
{π(i)}N1 = {i}N

ỹπ(i) = −
[
∂L(yi,F (xπ(i)))

∂F (xπ(i))

]
F (x)=Fm−1(x)

, i = 1, · · · , Ñ

am = argmina,β
∑Ñ

i=1

(
ỹπ(i) − βh(xπ(i);a)

)2
ρm = argminρ

∑Ñ
i=1 L(yπ(i), Fm−1(xπ(i)) + ρh(xπ(i))

Fm(x) = Fm−1(x) + ρmh(x;a)
End For

Table 3: Stochastic Gradient Boost Algorithm

A stochastic version of Algorithm 2 has been developed in Friedman (2002), in which at each
iteration, only a subsample of the training data is used to fit the weak learner and compute the
model update. To be more specific, let {π(i)}N1 be a random permutation of {1, · · · , N}, and thus a

random subsample of size Ñ < N is given by {yπ(i),xπ(i)}Ñ1 . The detailed description of stochastic
gradient boosting algorithm is provided in Table 3.

The simulation results in Friedman (2002) shows that stochastic gradient boost algorithm can
be much faster and more accurate than deterministic gradient boost algorithm, although the exact
reason remains unknown. One possible explanation has to do with variance reduction as stochastic
gradient boost algorithm is shown to be most effective with small samples with high capacity weak
learners.

Those gradient boosting algorithms developed in Friedman (2001) and Friedman (2002) have
become very popular in practice, and many statistical softwares and packages have included them.
However, they also have some limitations. First, both algorithms, even the stochastic gradient descent
algorithm, contains a large amount of gradient computation, which could be a major concern if
the running time becomes an issue. Second, Friedman (2001) and Friedman (2002) provide little
analytical result about the performance of these two algorithms, although they indeed implement a
lot of simulations. Due to the lack of quantitative analysis, it is hard to analyze the properties of
these algorithms under statistical learning framework. For example, we do not know whether these
two algorithms are stable or not. And we do not know these two algorithms are consistent or not,
either.

5

4 Numerical Study

In this part, we provide two numerical studies to illustrate the application of Gradient Boost Models in
Friedman (2001). The first example is regression, and the second example is classification. In these
two examples, I will compare the prediction accuracy and running time of deterministic gradient
descent algorithm in Friedman (2001) with other popular learning models.

4.1 Regression Study

In this study, we use housing data collected on residential properties sold in Ames, Iowa between
2006 and 2010. This data set contains 1460 samples, and each sample has 80 features, such as the
building class, lot size in square feet, type of utilities available and so on. Some of these features are
numerical variables, and others are categorical variables. And we want to build a regression model
to predict the sale price.

We will use regression trees based gradient boosted model in Friedman (2001) to do the prediction.
In other words, in (2), we let the weak learners be J-node regression tree model, which itself has the
additive form

h(x; {bj , Rj}J1) =

J∑
j=1

bj1(x ∈ Rj), (11)

where {Rj}J1 is the terminal nodes of this regression tree. Hence for a regression tree, (8) becomes

Fm(x) = Fm−1(x) + ρm

J∑
j=1

bjm1(x ∈ Rjm), (12)

where {Rjm}J1 are the terminal nodes at the m−th iteration that are obtained by least square and
bjm is the corresponding least square coefficients. To be more specific, in Table 2, we solve

argminR′j ,b′j

N∑
i=1

ỹi − J∑
j=1

b′j1(x ∈ R′j))

2

(13)

to obtain Rj and bj at each iteration. And to do regression, we choose the loss function to be
L(y, F) = (y − F)2/2. The algorithm is summarized in Table 4.

Algorithm 4: Regression Tree GBM

Input: a labeled training data set {xi, yi}N1
Initialization: F0(x) = ȳ
For m = 1, 2, , · · · ,M :

ỹi = yi − Fm−1(xi), i = 1, · · · , N
{Rjm}J1 = J-terminal node tree({ỹi,xi}N1)
γjm = meanxi∈Rjm{yi − Fm−1(xi)}, j = 1, · · · , J
Fm(x) = Fm−1(x) +

∑J
j=1 γjm1(x ∈ Rjm)

End For

Table 4: Regression Tree Gradient Boost Algorithm

6

The prediction accuracy in this case study is represented by Root-Mean-Squared-Error (RMSE)
between the logarithm of the predicted value and the logarithm of the observed sales price. The
reason that we are taking logs is that errors in predicting expensive houses will be comparable to
errors in predicting cheap houses.

In Table 5, we provide the average time/accuracy, as well as the corresponding standard error of
prediction RMSE by running the simulation 5 times on different randomly splitted data (75% training
data and 25% test data), by GBM and four other models. Random Forest is an ensemble tree model
that is often used to provide a benchmark in prediction or classification. Ridge and Lasso are two
basic regularized regression models that are easy to implement. And MLR is the simple Multiple
Linear Regression. As for the GBM model, we set shrinkage parameter as 0.05, and number of trees
as 300.

Simulation No. Random Forest Ridge Lasso GBM MLR

1 0.1387 0.1202 0.1165 0.12990 0.1309
2 0.1568 0.1398 0.1373 0.1448 0.1530
3 0.1414 0.1379 0.1349 0.1281 0.1473
4 0.1373 0.1324 0.1291 0.1206 0.1424
5 0.1323 0.1189 0.1134 0.1185 0.1286
RMSE Mean 0.1413 0.12984 0.12624 0.12838 0.14044
RMSE std 0.0041 0.00440 0.00480 0.00460 0.00470
Running Time/s(mean) 12.4400 0.49000 0.35800 5.10200 0.01600

Table 5: Model Prediction of Five Simulations

From Table 5, it can be seen that:
(1) In terms of prediction error, Lasso and GBM perform best, and from our other simulation results,
we believe that GBM is slightly better than Lasso, and also GBM has smaller standard error. Ridge
is slightly worse but usually better than Random Forest. As a result, from these simulation results,
it can be seen that GBM is indeed better than many other popular learning models, although not
very obvious.
(2) In terms of running time, MLR is the fastest, as it is the simplest model; and GBM is the slow-
est. As it was said before, GBM involves a lot of gradient computation. Moreover, please note that
the running time of GBM is about 10 times as that of Ridge and Lasso, and therefore when taking
running time into consideration, GBM might not be the best model.

4.2 Classification Study

In this study, we use loan data for all loans issued through the 2007-2015 in Lending Club, which
include the current loan status (Current, Late, Fully Paid, etc.) and latest payment information.
There are 887383 observations, and each of them contains 75 features. We want to build a binary
classification model, and use it to predict the default status of all loans issued in 2016.

We will use classification tree based gradient boosted model in Friedman (2001) to do the classi-
fication. First define the loss function to be

L({yk, Fk(x)}21) = −
2∑

k=1

yk log pk(x) (14)

7

where yk = 1(class = k), and pk(x) = P(yk = 1|x). Use symmetric multiple logistic transform

Fk(x) = log pk(x)− 1

2

2∑
l=1

log pl(x) (15)

or

pk(x) = exp(Fk(x))/
2∑
l=1

exp(Fl(x)). (16)

Similar to the development of regression tree based gradient boosting algorithm, the 2-class logistic
gradient boosting algorithm is developed and described in Table 6. Note that this 2-class algorithm
can be extended to K− class algorithm, but for our illustration purpose, 2-class is enough.

Algorithm 5: 2-class Logistic GBM

Input: a labeled training data set {xi, yi}N1
Initialization: Fk0(x) = 0, k = 1, 2
For m = 1, 2, , · · · ,M :

pk(x) = exp(Fk(x))/
∑2

l=1 exp(Fl(x)), k = 1, 2
For k = 1 to 2

ŷik = yik − pk(xi), i = 1, · · · , N
{Rjkm}Jj=1 = J − terminal node tree ({ỹik,xi}N1)

γjkm = 1/2

∑
x∈Rjkm

ŷik∑
x∈Rjkm

|ŷik|(1−|ŷik|)

Fkm(x) = Fk,m−1(x) +
∑J

j=1 γjkm1(x ∈ Rjkm)

End For
End For

Table 6: Classification Tree Gradient Boost Algorithm

In Table 7, we provide our prediction result by GBM and Rpart. (Note that we are using training
data in 2007-2015 to predict the default status of each loan in 2016). Rpart is Recursive Partitioning
and Regression Trees, which is a variation of tree based model, and it is used as the benchmark in this
case. I also tried many other popular models as in the regression study, but due to this huge dataset,
many models do not work, such as Logistic Model and Random Forest. Although it may be possible
to adapt those models to this huge dataset by using some packages, due to the time limit, I only
choose GBM and Rpart models, as well as their average model (use the average of these two models’
prediction). In GBM, I set the number of trees to be 30000 and shrinkage to be 0.001. Besides, our
code is run on a computer with Processor Intel(R) Core(TM) i7-4790 CPU @3.60GHz 3.60GHz, and
RAM 16GB.
From Table 7, it can be seen that GBM performs better than Rpart in an obvious way, and from
my experiment, it is highly likely that the number of trees can be increased even further to obtain a
better result. However, it is also very obvious that GBM runs very slowly when the number of trees
is 30000, and this is also why I do not try even larger number of trees as it will take too much time
to run the code. Again, from this classification study, it can be implied that although GBM can be
better in many applications, it also requires a lot more computational resources.

8

Model Rpart GBM Average

Logloss 0.1137995 0.1029014 0.1019476
Running Time ≈ 15min ≈ 13hours ≈ 13hours

Table 7: Model classification Results

5 Future Works

This report mainly summarizes and reviews three papers: Mason and Frean (1999), Friedman (2001)
and Friedman (2002), all of which are early works about gradient boosting methods. So it is not
surprising that many further works can be done based on those papers, and the following is some
direction that I think worth exploring (although some of them might have already be done):

First, in Mason and Frean (1999), as Theorem 1 is only an existence result, it would be good if we
can show the convergence rate of Anyboost. Moreover, it would be even better if we can determine
the limit value C∗ or the difference between C∗ and the lower bound of loss function. Besides, we
can try to investigate better ways of calculating a large value of −〈∇L(F), f〉, such as getting the
largest value of −〈∇L(F), f〉 when f ∈ F .

Second, in Friedman (2001) and Friedman (2002), there is a lack of analytical results. Therefore,
many can be done from this analytical perspective. For example, it would be interesting to analyze the
stability, generalization ability, and consistency of gradient boosting method (GBM) under statistical
learning framework. In addition, the implementation of GBM in Section 4 shows that although GBM
performs better than many other popular learning models, its running time is also much longer.
Therefore, Friedman (2002) proposed a stochastic version of GBM, which can reduce the running
time to some extent (due to the time limit, I did not implement stochastic GBM). And recently,
there are many papers about how to further accelerate stochastic gradient method which could be
useful in reducing the running time(I remember that some student has presented several very recent
papers on this topic in May 10th’s presentation).

Finally, in order to reduce overfitting, the gradient descent models often include some regular-
ization terms, such as the number of trees and shrinkage in my implementation of tree based GBM.
In my implementation, it takes a lot of time to tune these parameters, and therefore it would be
extremely useful if someone can develop some guiding principle about how to tune these parameters.

References

Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of on-line learning and an application
to boosting. In European conference on computational learning theory, pages 23–37.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. Machine Learning:
Proceedings of the Thirteenth International Conference.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics,
29(5):221–246.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4):367–
378.

Friedman, Jerome, T. H. and Tibshirani, R. (2000). Stochastic gradient boosting. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors), 28(2):337–407.

Mason, Llew, J. B. P. L. B. and Frean, M. (1999). Functional gradient techniques for combining hypotheses.
Advances in Neural Information Processing Systems, pages 221–246.

9

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386–407.

10

	Introduction
	Convergence of Anyboost (Mason1999)
	Gradient Boosted Models (Friedman2001, Friedman2002)
	Numerical Study
	Regression Study
	Classification Study

	Future Works

